

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 1

Bringing stakeholders together through
modeling

Evan Masters

emasters@critical-logic.com

Abstract

Written specs are often confusing, ambiguous, incomplete, or simply gargantuan and overly complex.
This leads directly to defects being built into the business systems that they attempt to describe. In this
talk, I will describe a method that enables enterprises to deliver high quality business systems in a
repeatable, predictable fashion using technology, standards, modeling principles, and automation to
validate and verify system behavior.

We have all heard that a picture is worth a thousand words, so why do we use so many words to describe
things instead of using pictures? In this talk, I will describe how the act of creating pictures in the form of
models to visualize the intended behavior of a business system brings together stakeholders of every part
of the Software Development Lifecycle (SDLC). These models augment the documentation created to
convey business needs to the development team. Models can eliminate ambiguity, clarify confusion, and
fill in the gaps from incomplete specs. They can also provide a simplified view into the complex, making
what may seem massive more manageable.

I have personally been involved in more than two dozen development projects where models were
created as part of the design phase, and my organization has been involved with over 100 such projects.
The models were designed with the intent of using them for Model-Based Testing (MBT), but they served
a useful purpose to nearly all stakeholders involved in the business system development process. In
some projects, the organizations were able to do more with their existing staff. In others, software quality
metrics were increased. Still others were able to begin implementing automated testing using these
models as guides.

In all cases, visualizing the information in the form of models creates a common understanding of the
desired behavior of the business system under development, reduces the defects introduced into the
development process, and brings stakeholders together to take charge of quality at every stage of the
design and development processes.

Biography

Evan Masters is passionate about seeing customers succeed. With over 10 years’ experience in the
software quality assurance industry, Evan has helped companies around the globe overcome challenges
and implement innovative new technologies in support of business goals and objectives. Working with
companies of all sizes, from startups to Fortune 5 companies, and thriving on his ability to listen to and
understand customers’ real needs, he has equipped and supported teams with the tools necessary to
take their capabilities to the next level.

Copyright Evan Masters, September 2021

mailto:emasters@critical-logic.com

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 2

1 Introduction

To meet the ever-increasing demands of delivering high quality software products and solutions at a pace
matching rapidly evolving business needs, Software Quality Assurance (SQA) professionals need to
leverage every resource at their disposal. An effective strategy SQA professionals can employ to ensure
the quality of the product or solution is to engage with stakeholders at every stage of the SDLC, not just
the Testing stage. A tool that can be used to implement this strategy is a diagram of their understanding
of the intended behavior of the business system. This helps to prevent any misalignment in the
understanding of the intended behavior across the various stakeholder groups.

Creating (good) models and diagrams to augment text-based definitions of the desired system offers
many benefits which I will discuss in depth throughout this work. Creating models and diagrams allows
SQA professionals to become engaged much sooner in the SDLC than typically realized, putting quality
front and center from the start of the process. These models and diagrams give the SQA professionals a
layer of abstraction that can be used to convey an understanding of the system being developed in a way
that stakeholders of any technical or business level of expertise can understand.

As organizations grow and SQA teams improve their capabilities, models and diagrams can evolve with
them. SQA groups can leverage the models created early in the SDLC to design and generate their tests.
This process is known as Model Based Testing, or MBT. SQA groups who automate their test execution
can leverage these models even further, exposing their automation frameworks at the model level. This
process gives stakeholders at every level the ability to create automation scripts, regardless of their
technical expertise. I will describe this evolution from diagram and model creation, to Model Based
Testing, to automatic script generation below.

2 Benefits of Creating (Good) Models and Diagrams

Before I dive into my description of how creating models and diagrams can bring stakeholders together to
improve software quality, I will begin with a question: What is the end-goal of software development? The
most limited and least prescriptive answer is “to deliver quality business systems.” This begs the follow up
question: “does software development always achieve the goal it sets out to?” The obvious answer is no,
it does not. Why is this? In practice, there are numerous reasons why development falls short of its goal;
lack of time or budget, not having the required skill set, the limitations of technology, or most critically, a
misunderstanding of the true business need, to name a few.

This misunderstanding can come from any number of sources. Sometimes the business itself does not
know its real need or cannot articulate it sufficiently. Important aspects of the need are also often omitted
or misconstrued when translated from business to technical terms. Other times, the development team is
siloed and does not have the proper context to adequately grasp the business need and deliver
accordingly. Most common, though, is that the business attempts to convey the need using traditional
communication methods, such as a written specification or a requirements document, which fall short of
providing enough detail to fully implement and test the system.

This is significant because recent studies1 show that over 80% of software defects originate from the
requirements elicitation and design stages of the SDLC. One of the primary reasons is that the written
English language is inherently ambiguous, even to those with the highest degree of mastery. Many
business stakeholders are adept writers, but this method of communication leaves much to be desired.
One effective way to circumvent to downfalls of the written word is to augment specs and requirements
with pictures that illustrate and help visualize the concept that is being conveyed.

As I mentioned in my abstract, a well-known saying goes: “A picture is worth a thousand words”. While
there is some debate as to whether or not this adage holds true universally, I will accept it as a premise
for the sake of this work. What kind of pictures, then, are useful when it comes to helping the SDLC
achieve what it sets out to do? It turns out that there is no lack of useful visual aids; from simple ‘back of
the napkin’ sketches, to abstractions brought to light on a whiteboard, to formal diagrams that have

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 3

defined standards and best practices. I will focus on the more formal types of pictures in this work;
however, it is worth mentioning that less formal types can still be beneficial.

It is important to note that not all written specs are ‘bad’ specs. No one sets out to write a ‘bad’ spec;
rather the spec feels accurate to the author who understands the need but fails to convey it to a reader is
not already familiar with it. In other words, I could write a requirement or user story that is complete and
clear from my perspective but can be interpreted very differently by someone else. I recently had a
conversation with my boss where I said I was having a meeting with a customer next Thursday (we had
the conversation on a Monday). He asked for clarification on the date. To me, next Thursday obviously
meant the Thursday of the following week. He took it to mean the Thursday of the current week, being the
next Thursday we would encounter. Even though I thought I was clear, there was ambiguity in my
statement.

There are useful tactics and techniques that can be used to make written specs less ambiguous. Formal
structured language, for example, can assign well-defined meanings to words that may other be
interpreted multiple ways. In the ‘next Thursday’ example, I could have augmented the description of the
day of the meeting with a numerical date. Instead of ‘next Thursday’, I could have said ‘Thursday, July
15th, 2021’. There is only one way to interpret the date in this format.

It is worth mentioning that it is just as possible to create models or diagrams that are ambiguous or
confusing as it is to author written specs that are ambiguous or confusing. One should not simply create
models or diagrams for the sake of having them without having a strategy or plan in place on how they
will be implemented. In order for models or diagrams to add value, they must be clear, well designed, and
thought out. Fortunately, many types of diagrams have conventions, best practices, and even restrictions
on what you can do in the diagram in order to help ensure the completed work does what it sets out to do.

So, what does it look like to apply the approach of creating models and diagrams (more on this distinction
later) to the SDLC? Fortunately, we are able to create models and diagrams at every stage of the SDLC,
leveraging the features and benefits of different types of models and diagrams that best suit the various
stages. Some types of diagrams can evolve through stages of the SDLC, taking on more content or
growing in detail as the project progresses. Shortly, I will discuss these features and benefits during the
various stages of the SDLC, including types that can go through this evolution.

Before I discuss the features and benefits, it is important to state that one way to categorize models and
diagrams is as such: Behavioral and Structural (also sometimes called dynamic and static respectively).
The Object Model Group (OMG) maintains the standard for the Unified Modeling Language (UML) and
describes the two categories as follows.

2.1 Behavioral Diagrams

“Behavioral Diagram: emphasizes the dynamic behavior of the system by showing collaborations among
objects and changes to the internal states of objects. This view includes sequence diagrams, activity
diagrams, and state machine diagrams.”

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 4

2.1.1 Activity Diagrams

Figure 1: Example Activity Diagram2

An example of a Behavioral Diagram is an Activity Diagram. An Activity Diagram, as defined by the OMG,
is “…a special case of a state diagram in which all (or at least most) of the states are action or subactivity
states and in which all (or at least most) of the transitions are triggered by completion of the actions or
subactivities in the source states…The purpose of this diagram is to focus on flows driven by internal
processing (as opposed to external events).”

Activity diagrams show activities, nodes, splits and joins, and the ‘flow’ of the process through these
elements. Critical Logic used Activity Diagrams at a major financial institution to help aide their IT
department’s transition from a Waterfall-oriented development methodology to an Agile development
methodology. While the digital transformation had many aspects to it, introducing diagrams into the
process streamlined communication between the team members. Business stakeholders were able to
create a high-level version of the diagram. We considered this initial version the minimum viable product,
or MVP, view of the business need. The MVP version was then handed off to the QA stakeholders who
more fully fleshed out the diagram with exceptions and implementation-level details. The implementation
version was then provided, along with the user stories and acceptance criteria, to the development team.
The result was a common understanding of the business need at every step of the way, along with the
following benefits:

1. A reduction in overall solution design and development time
2. Reduced time and cost of test design
3. A higher quality product delivered in each sprint

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 5

2.1.2 Use Case Diagrams

User

Design Tests

Select Tests to
Compare

Push Tests to TMS

Execute Tests

Generate Run Logs

Select Results to
Publish

Execution Engine

<<extend>>

<<include>>

<<extend>>

TMS: Test
Management
System

<<extend>>

Push Test
Results to TMS

<<extend>>

STAR

Figure 2: Example Use Case Diagram3

Another example of a Behavioral Diagram is a Use Case Diagram. A Use Case Diagram is “…a graph of
actors, a set of use cases, possibly some interfaces, and the relationships between these elements. The
relationships are associations between the actors and the use cases, generalizations between the actors,
and generalizations, extends, and includes among the use cases. The use cases may optionally be
enclosed by a rectangle that represents the boundary of the containing system or classifier.”

Use Case diagrams, sometimes called Function Maps, show the different functions that make up a
system as well as the actors that invoke those functions. Notice that each node, or Use Case, begins with
a verb. Critical Logic utilizes Use Case Diagrams in its own internal development projects. Use Case
Diagrams helped Critical Logic define the current state of the software product, IQM Studio. With a clear
picture of their as-is system, Critical Logic was then able to define customer needs and identify functional
gaps which could be put on their product roadmap to define their to-be system. In the theme of using
diagrams to bring people together, stakeholders from all business areas (including Executives, Product
Owners, software QA, and developers) were able to study this roadmap and see how the various
functions of IQM Studio related to each other and understand the business value of implementing new
functions.

2.2 Structural Diagrams

“Structural Diagram: emphasizes the static structure of the system using objects, attributes, operations
and relationships. It includes class diagrams and composite structure diagrams.4”

Structural diagrams describe the static, unchanging elements of a system while Behavioral diagrams
describe a system ‘in action’. When used appropriately, both categories of diagrams serve a useful
purpose for describing the business system and the two categories complement each other, meaning that
both categories of diagrams can be used in parallel. It should also be noted that while there are currently

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 6

14 types of models and diagrams recognized by the OMG UML standard, many other types of diagrams
exist that can be useful in their own right.

2.2.1 Class Diagrams

Figure 3: Example Class Diagram 1

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 7

Figure 4: Example Class Diagram 25

An example of a Structural Diagram is a Class Diagram. A Class Diagram is “…a collection of static
declarative model elements, such as classes, interfaces, and their relationships, connected as a graph to
each other and to their contents.”

Class Diagrams show various levels of detail of the system they represent. The first example above
shows only the classes and their relationships, while the second example includes attributes about the
classes. Class diagrams are often thought of as technical diagrams used only by Object-Orient
programmers. Critical Logic has used Class Diagrams as a powerful tool for bridging the gap between
business and technical stakeholders through an abstraction layer. Class Diagrams also provide the
vocabulary for rule and requirement writing, again allowing different stakeholders to communicate using
the same language.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 8

2.2.2 Component Diagrams

Figure 5: Example Component Diagram

Another example of a Structural Diagram is a Component Diagram. A Component Diagram is “…a graph
of components connected by dependency relationships. Components may also be connected to
components by physical containment representing composition relationships.”

Like Class diagrams, Component Diagrams are often thought of as technical diagrams used only by
Object-Orient programmers. They also serve as a powerful tool for bridging the gap between business
and technical stakeholders through an abstraction layer. Critical Logic has developed Component
Diagrams on customer projects to bring attention to the various interfaces of a system or systems that are
part of the implementation solution. Component Diagrams can be effective for developing a holistic view
of the solution as well as everything the solution touches.

2.3 Uses of diagrams during the SDLC

There are no hard and fast rules for which models and diagrams should be created during the various
stages of the SDLC, though some do tend to lend themselves to be most effective at certain times. One
approach to selecting a type of diagram is to create them that are strategic in nature early on in the
process and, as the process advances, transition to models and diagrams that are more functional in
nature. For example, while in the planning and analysis phases, creating diagrams regarding organization
structure (Organizational Charts), As-is and To-be processes (Business Process Models), business
activities (Activity Diagrams), or associations (Entity Relationship Diagrams) could be quite useful. As the
project advances to the design, development, testing, and implementation phases, creating models and

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 9

diagrams regarding specific functions (Use Case Diagrams, sometimes referred to as Function Maps),
system architecture (Database Diagrams, Component Diagrams), intended system behavior (Cause-
Effect Models, Activity Diagrams), or system transitions (State Machine Diagrams) will greatly augment
the text-based definitions of the system.

Notice that Activity Diagrams are effective to create in both the early stages of the SDLC as well as the
latter. As mentioned previously, some types of diagrams lend themselves well to evolving through the
SDLC. Cause-Effect Models are another type that can evolve. Models and diagrams that can evolve
throughout the process are especially valuable because they continue to be useful as the process
advances from one group of stakeholders to the next, adding a level of continuity that could otherwise be
lost.

There are benefits to creating diagrams in both pre-development and post-development stages of the
SDLC. When creating models early on, some of the benefits include:

• Developing a clear understanding of the need to be met

• Accelerating the design stage

• Allowing questions to be brought to light and discussed by the appropriate stakeholders

• Unveiling ambiguity that may exist in the business requirements

• Reducing maintenance burden in the Maintenance and Operation stages

Creating models and diagrams helps stakeholders visualize the need in a way that can be hard to do in
pure text-based descriptions. Similarly, when designing the ‘what’ part of the way the need will be met (in
a solution-independent fashion), creating models and diagrams reinforce that what will be built should be
built. For example, a Use Case Diagram that shows a complete, non-overlapping list of all functions the
new system will contain will much more effectively and efficiently be shared among the vested
stakeholders than a text-based document on its own. This in turn will help the design come together more
efficiently with less back-and-forth between stakeholders. This greatly reduces the length of the design
phase. Models and diagrams hold a significant advantage when it comes to bringing ambiguity regarding
the intended behavior of a system to light. The ambiguity can then be discussed and driven to resolution
in the early stages of the SDLC, saving cost and rework from occurring later on.

Creating and maintaining models and diagrams in the later stages of the SDLC also provides number
benefits:

• Provides a clear sense of how the solution will be implemented

• Unveils ambiguity that was not discovered during initial design phase

• Clarifies confusion

• Fills in the gaps in the spec

• Makes the massive manageable

• Creates a simplified view of the complex

• Can be fleshed out to contain very deep level of detail (e.g., equivalence classes, boundary
values, combinations)

• Some types allow for tests to be derived from the diagram – others can even automatically
generate tests from the diagrams

When the business system being developed has a graphical user interface, or GUI, models and diagrams
are effective to convey what the GUI should look like. For example, imagine how much effort it would take
to describe what a website’s homepage should look like without using models or diagrams (such as
mockups or wireframes). Even when the system does not have a GUI or there are GUI-independent
components to the system, models and diagrams are still useful to describe how these components
should work. Using a Database diagram to represent the architecture of a backend database is
significantly more efficient than an attempt to describe the architecture using only words.

As with creating models and diagrams in the early stages of the SDLC, creating them during the later
stages helps to bring to light questions, ambiguities, and gaps in the specifications, again saving cost and

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 10

preventing rework later on. This also is an effective way to eliminate defects from being introduced into
the system due to unclear specs.

Models and diagrams also serve a helpful purpose when it comes to defining scope. Certain types of
diagrams, Use Case Diagrams for example, can be used to fully define the functions of a system, making
what seems like a massive, complex interaction of disparate things seem manageable and
understandable.

When models and diagrams are leveraged to capture low levels of detail, they serve multiple purposes.
For example, when Cause Effect Diagrams are used to define the intended behavior of a system, they
can take on increasing levels of detail as a project moves from design to development to testing and,
finally, the implementation stage. A Cause Effect Diagram can start out defining the ‘go-right’ behaviors of
a system early on and then have more details, such as exceptions or alternate paths added as they are
defined. Cause Effect Diagrams are also excellent for defining boundary value conditions, equivalence
classes, and logical combinations. Certain types of Cause Effect Diagrams can even automatically
generate high coverage test cases from the information in the diagram, an effective type of Model Based
Testing (MBT).

A major benefit of MBT is that the models themselves are multi-use artifacts. Many other artifacts
developed during the SDLC are single-use. Functional specifications, for example, serve the sole purpose
of specifying how the solution will be implemented. While they can serve as a guide to developing other
artifacts, it still requires an additional independent step to generate the additional artifacts.

Models used in MBT, however, are different. They serve the valuable initial purpose in bringing
stakeholders of various levels together to give them a communication conduit that develops a common
understanding of the business need and solution to be implemented. These models can go on to serve an
additional purpose when they are used to create tests from the information defined in the models. Some
commercially available tools can even automatically generate tests from the model. This allows the model
to continue to add value throughout the stages of the SDLC, including into the maintenance and operation
phases. The next section will expand on the benefit recognized by implementing MBT.

3 Benefits of Moving to Model Based Testing

Model Based Testing has been increasing in popularity, but it is far from a new concept. In 2008 a
Department of Defense contractor, General Dynamics, was challenged by the United States Navy to
reduce testing costs while at the same time increase the quality of their mission- and life-critical systems,
which was no small feat6. A year later, they were introduced to an MBT solution that they implemented for
their Navy project. In addition to saving General Dynamics $3 Million on that project alone, Ron Townsen,
the Sr. Lead Engineer at General Dynamics had this to say:

“[DTT, the modeling tool], along with the higher quality of model-based testing, gave us the approach we
have been looking for...Especially in areas of complex design and safety critical needs”

General Dynamics is not alone in their implementation of MBT. The Model-Based Testing User Survey
has been administered and published by a number of individuals since at least 2011. The most recent
survey was administered and published in 2019 by two members of the German Testing Board, Anne
Kramer and Bruno Legeard. One question on the survey asked respondents about their expectations for
implementing MBT at their organization, to which over 60% of respondents answered, “We wish to
improve the communication between stakeholders.” The survey goes on to ask, “From your current
experience, does MBT fulfill those expectations?”. A staggering 75% of respondents answered “Yes”
(46%) or “Partly” (29%) to this question.7

Studying additional questions from the survey reinforces the idea that models and diagrams can be used
at any stage of the SDLC, requirements elicitation for example, to great benefit. These questions also
demonstrate how models and diagrams evolve from when they are built as they progress from stage to
stage.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 11

Another excellent example of this is Sun Microsystems, which turned to MBT to help with their unique
challenges after being acquired by Oracle in 20108. At the time, Sun’s ‘Configurator’ was a system
designed to give their sales force a current view of their product offering, ensuring that the most current
and compatible options were offered. Given the rapidly changing state of the complex hardware and
software landscape, the Configurator’s nearly 60,000 business rules were constantly in a state of flux. In
a given month, an average of 25% of the rules would undergo some form of change. By representing
these rules in Cause Effect Diagrams, then automatically generating tests from the diagrams, several
significant benefits were realized.

First, the rate of release for the configurator doubled, increasing from once every other month to once a
month. This means that the Configurator was always returning the most up to date offering of Sun’s
product line. It also ensured that quotes are accurate and timely.

Second, several consecutive zero-defect releases went into production. This was something that Sun had
not been able to accomplish prior to implementing MBT with Cause Effect Diagrams. These zero-defect
releases give their sales team confidence that the information they are giving their customers is correct
and reliable.

Third, the amount of testing resources to accomplish these achievements actually decreased by a third.
By freeing up testing resources from manual testing, Sun’s SQA teams are able to focus on value-added
QA activities. Sun also reduced their head count of testing resources, allowing these resources to be
moved to other areas such as to the dev team.

Salesforce is another household name that has benefited significantly from implementing MBT9. Straining
from rapid growth due to their successful platform and services, Salesforce.com had no consistent
process for capturing requirements during the elicitation stage. This led, unsurprisingly, to missed or
incorrectly implemented requirements causing defects in production. Given Salesforce’s reputation as a
world leader in Software as a Service, this was not sustainable. As mentioned above, the requirement
authors at Salesforce.com set out to create complete, unambiguous, and implementable requirements. In
their case, and many cases just like this, it was a limitation of resources available that sabotaged their
ability to achieve their goal.

Within weeks of implementing Model Based Testing and focusing on visualizing requirements for clarity
and completeness, Russ Nelson, the Vice President of Applications Development had this to say:

“[The MBT implementor] reduced our requirements elicitation investment by 50% while dramatically
increasing the quality of the software we deliver…[and] they allow us to leverage our existing staff 4:1.”

What does the process of creating Cause Effect Models which automatically generate tests look like in
practice then? Let’s walk through it.

3.1 Model Based Testing in Practice

The first step in a disciplined and effective approach to modeling requirements is to perform an initial
analysis of the requirement artifacts that have been developed so far. To illustrate this, I will describe
another real-world application. Critical Logic engaged in a project in 2015 – 2016 to assist in the
modernization of a Veteran’s Affairs (VA) system that would centralize and make nationally available
medical records of US Armed Forces Veterans, specifically their medications and adverse reactions to
medications. By the time Critical Logic engaged in the project, all of the business and functional
requirements had been defined by the VA business sponsor and turned over to the vendor for
implementation.

After winning the contract and taking delivery of the requirements, the vendor quickly realized that the
‘complete’ requirements were anything but. This was a good realization, but they were left without a clear
path forward to develop the solution the VA would accept. The requirements were simply not complete
and too ambiguous for development and implementation. Due to the nature of the contract, requesting
new requirements was also not an option. They needed an approach that would allow them to leverage

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 12

the work the VA had done AND result in a complete requirement set, which is when Critical Logic became
involved.

Critical Logic’s first task was to represent the requirements in Use Case Diagrams. Doing so
demonstrated the areas that the VA requirement authors had failed to define. The Use Case Diagrams
proved effective at showing exactly where additional requirement elicitation or clarification was required.
This approach allowed the vendor to go back to the VA in a manner that showed they were leveraging all
of the work the VA had undertaken in authoring the requirements, while asking only targeted questions to
fill the requirement gaps and clarify ambiguities.

Once a truly complete set of requirements had been defined, Critical Logic began representing the
requirements in Cause Effect Diagrams. Cause Effects Diagrams created at this stage built upon the work
done in the Use Case Diagrams and included functional requirement-level information that unearthed
additional requirement gaps and ambiguities. The image below is an example of a Cause Effect Diagram
from the project that unearthed functionality that was not defined well enough to be implemented by the
development team.

Figure 6: Real-world Cause Effect Diagram

In general, each function defined in the Use Case Diagrams corresponded to a set of functional Cause
Effect Diagrams. Once a Cause Effect Diagram was created and taken to a point where it was ready for
review, Critical Logic would review the diagram with the VA and Vendor subject matter experts (SMEs) in
ambiguity review sessions, bringing to light any questions that arose during the diagram creation process.
When questions could not be answer in real-time, Critical Logic would track the ambiguity and ensure that
it was driven to resolution.

Once the diagrams had resolved all of the requirement gaps and ambiguities, a test generation algorithm
was invoked that took the information in the Cause Effect Diagram as input and automatically generated
tests from the model.

Figure 7: The test generation algorithm created 6 scenarios from the diagram

Ideally at this point, the tests would be reviewed by the SMEs for sign off. Because the tests had been
generated from the model, and because the model had been reviewed by the VA and Vendor SMEs, the
test review process was incredibly efficient, and signoff was given with minimal updates needed.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 13

The benefits of using Use Case and Cause Effect Diagrams to augment and enhance the VA-authored
requirements were apparent in the first sprint retrospective where the business was able to see the MVP.
Sprint after sprint, as the VA and vendor teams embraced the CEM process and the ambiguity and test
review sessions, efficiency increased, and the development team consistently delivered nearly defect-free
product that truly represented the business needs. Ultimately, the product was accepted, and the
implementation was successful.

In each of these cases, we saw organizations with different challenges and goals; all of which were
realized with the assistance of MBT. General Dynamics was able to improve the quality of their mission-
and life-critical systems while at the same time reducing their testing costs. Sun Microsystems were able
to keep up with the frenetic rate of change required for them to maintain their market-leading status.
Salesforce.com saw that they could improve and standardize their requirements elicitation process while
at the same time allowing their staff to be more efficient with their time. The VA implementation vendor
took the incomplete, ambiguous requirements authored by their customer and delivered a truly complete
set of requirements and a product that fully represented these requirements.

In each example, creating models provided the project artifacts that allowed stakeholders to come
together and enhance the quality of the system in development. With General Dynamics and the VA
vendor, the models provided a graphical representation that was easily consumable by the business and
dev teams. By discussing questions in the context of the graphical representation of the requirements, the
gap between the business and development stakeholders was bridged. With Salesforce.com, CEMs were
used to enhance the elicitation process, putting the end users and business analysts on the same page.
At Sun, CEMs brought stakeholders together to allow their business and development teams to keep up
with the required rapid pace of change that Sun needed to maintain their market leader status.

4 Moving from Model Based Testing to Automated Testing

Once an organization has progressed to the point where they are realizing the benefits of Model Based
Testing, there is an additional level that can be achieved to further promote unity between all
stakeholders. Before I get into the details of this final step, however, let’s discuss the distinction between
a model and a diagram.

A model is an abstract representation of something, a system for example, where every part of that
system is defined exactly once. A diagram is an instance of the model. Each element that makes up that
system is referenced when that element is needed to define the system in a diagram. Each time an
element is used, it is a reference to the element. This eliminates the possibility of having the same
element described in more than one way and ensures that each element referenced is exactly the same
each time it is used.

A diagram can be thought of as a specific view of the model. Different elements from the model can be
assembled in a way to create the view you are interested in, and the same elements from the model can
be used to create any number of different diagrams.

This distinction between models and diagrams is important when talking about automated testing
because there is an incredibly effective way to leverage models, MBT, and automated testing frameworks
that takes advantage of the concept of a model. This concept was put into practice at General Dynamics,
as mentioned above. Specifically, the teams at General Dynamics created Cause Effect Models to
represent the two major components of their integration project. These two systems combined had over
2,500 requirements to define their intended behaviors. Even the most skilled analyst could never ensure
that this was a complete, unambiguous, non-contradictory list of statements using only formal structured
text. By representing these requirements in a disciplined, structured fashion using Cause Effect Models,
the teams were able to realize all of the benefits mentioned above. They raised questions via ambiguity
review sessions in a regular cadence and were able to get clarification and improve the requirements
before they were approved and sent to the development team. Eventually, the development team started

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 14

sending a representative to participate in the ambiguity review sessions to get a firsthand account of the
clarification process. In this instance, modeling helped bring stakeholders together in a situation where
they otherwise would have remained siloed.

Once the Cause Effect Models were created, the team was able to automatically generate a full coverage
set of tests from the models. Because the Cause Effect Models were created in the design stage, and the
tests were generated from the models, the tests were developed much sooner in the SDLC than typical.
This meant that the tests were able to be sent to development team along with the requirements. The
benefit of this was that the development team knew exactly what tests would be executed in order to
validate the system behavior, giving them an additional design artifact to base their development on.

The General Dynamics team did not stop there, though. They then created an automation framework that
was exposed at the model level. Doing so allowed them to build an automation test script library that
correlated perfectly to the tests generated from the models by treating the automation framework like a
model - each object in the system under test was defined once and then called each time it was a part of
a test. These objects and their applicable actions were mapped to the steps defined in the models. After
these objects and actions were mapped, or scripted as it is often referred to as, the tests automatically
generated from the models also automatically generated the automation scripts.

To illustrate this process, here is a generic example that shows an example of a Cause Effect Model that
is used to generate tests, and the corresponding scripting that allows the model to also generate
automation scripts. This generic example represents a Library Information System, or LIS.

Figure 8: Cause Effect Model representing the LIS requirements

Here’s what the LIS looks like:

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 15

Figure 9: The LIS sample application10

Once a system such as the LIS is in production, an automation engineer can develop an automated
testing framework of the system, mapping out all of the objects and assigning the valid actions that can
be taken against those objects. For example, the user is able to click the ‘Edit’ link for a book in the LIS
table. In this case, the ‘Edit’ link is the object and ‘click’ is the action. (Specifically, left-mouse button
clicking is the action.) If we look at a subset of the CEM diagram, we see that the model represents the
‘Create New Book’ function:

Figure 10: Subset of the LIS CEM

In the LIS itself, this is what the ‘Create New Book’ function looks like:

Figure 11: Create New Book function of LIS

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 16

The objects we are interested in for the sake of creating automated tests are Name (text field), Author
(drop down box), Genre (drop down box), Insert (button), and Cancel (button). Each of these objects have
different actions that can be taken against them. Take the “Name” field for example. Some of the testing-
related actions we could take against the “Name” field are: Input text, Input text without clearing existing
text, Verify it is enabled, and Verify it contains a certain value. Critical Logic’s commercially available tool,
IQM Studio allows access to the automation framework with a simple drop-down selector tool that is
human readable. In other words, non-technical stakeholders who create or interact with CEMs are able to
‘script’ the models by selecting these objects and actions. This is what it looks like in the tool:

Figure 12: IQM Studio scripting and object and actions

All the modeler has to know is which object is being represented in the model and then choose which
action is being taken against that object. Behind the scenes, IQM Studio is linking the scripted steps (the
object/action pairs) to the code in the automated testing framework developed by the automation
engineer. This splits the automation tester role into two: the automation engineer and the scripter. The
automation engineer is responsible for developing and maintaining the automation framework code; that
is, the code needed for the automation tool to take actions against the defined objects. The scripter is
responsible for associating the proper objects and actions to the correct steps in the CEM. By doing so,
IQM Studio’s test generation algorithm automatically generates tests and automated test scripts at the
same time!

Figure 13: Example model generated test

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 17

Figure 14: Example automation script corresponding to manual test

What this means is that the testers (who are also the modelers and scripters) don’t need to know how
code and the automation engineer doesn’t have to design, author, or maintain tests – only the framework
itself!

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 18

5 Conclusion

The simple act of drawing a picture can convey so much meaning, information, and context. Creating
models and diagrams to augment text-based definitions of a business system’s intended behavior adds
value at every stage of the SDLC. One of the primary ways models and diagrams do this is by creating a
conduit of communication between stakeholder groups who do not always speak the same language. The
models and diagrams allow stakeholders of varying degrees of business and technical expertise to have
something to point to in order to help them convey concepts and ideas.

More mature organizations can leverage certain types of models and diagrams that allow them to
implement Model Based Testing. Because models and diagrams can be created as early as the design
phase, MBT can provide the benefit of developing tests much earlier in the SDLC than is typically
realized. This provides an additional, valuable design artifact that can be supplied to the development
team to provide an extra level of description into the intended behavior of the system being developed.

Finally, organizations can further leverage the models to build an automation framework that has the
primary characteristics of a model. This allows teams to access the automation framework at the model
level and generate automated testing scripts that can be executed once the business system has been
deployed. This means that all people, stakeholders at any level, can take control of the quality of their
organization’s business systems, and the models are a key artifact in enabling them to be able to do so.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 19

6 Selected Glossary of Terms (as defined by the OMG)

1. State Machine: The State Machine package is a subpackage of the Behavioral Elements
package. It specifies a set of concepts that can be used for modeling discrete behavior through
finite state-transition systems…State machines can be used to specify behavior of various
elements that are being modeled. For example, they can be used to model the behavior of
individual entities (such as, class instances) or to define the interactions (such as, collaborations)
between entities. In addition, the state machine formalism provides the semantic foundation for
activity graphs. This means that activity graphs are simply a special form of state machines.

2. Activity Diagram: A special case of a state diagram in which all (or at least most) of the states
are action or subactivity states and in which all (or at least most) of the transitions are triggered
by completion of the actions or subactivities in the source states…The purpose of this diagram is
to focus on flows driven by internal processing (as opposed to external events). In the context of
this paper, workflow diagram or swim lane diagram are not regarded as Activity Diagram, and
they are out of scope of this paper.

3. Activity Graph: The Activity Graphs package defines an extended view of the State Machine
package. State machines and activity graphs are both essentially state transition systems, and
share many metamodel elements. An activity graph is a special case of a state machine that is
used to model processes involving one or more classifiers. Its primary focus is on the sequence
and conditions for the actions that are taken, rather than on which classifiers perform those
actions. Most of the states in such a graph are action states that represent atomic actions; that is,
states that invoke actions and then wait for their completion. Transitions into action states are
triggered by events, which can be:

a. the completion of a previous action state (completion events),
b. the availability of an object in a certain state
c. the occurrence of a signal, or
d. the satisfaction of some condition.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 20

References

1. https://www.academia.edu/2182202/The_pattern_of_software_defects_spanning_across_size_co
mplexity

2. https://www.omg.org/spec/UML/1.4/PDF
3. Copyright, Critical Logic, 2021
4. https://www.visual-paradigm.com/guide/uml-unified-modeling-language/behavior-vs-structural-

diagram/
5. Copyright, Critical Logic, 2021
6. https://www.critical-logic.com/assets/General-Dynamics-Case-Study-V5.pdf
7. https://www.cftl.fr/wp-content/uploads/2020/02/2019-MBT-User-Survey-Results.pdf
8. https://www.critical-logic.com/assets/Critical-Logic-SunMicroSystems-CaseStudy.pdf
9. https://www.critical-logic.com/assets/Critical-Logic-SFDC-Case-Study.pdf
10. http://www.libraryinformationsystem.org/Books.aspx

https://www.academia.edu/2182202/The_pattern_of_software_defects_spanning_across_size_complexity
https://www.academia.edu/2182202/The_pattern_of_software_defects_spanning_across_size_complexity
https://www.omg.org/spec/UML/1.4/PDF
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/behavior-vs-structural-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/behavior-vs-structural-diagram/
https://www.critical-logic.com/assets/General-Dynamics-Case-Study-V5.pdf
https://www.cftl.fr/wp-content/uploads/2020/02/2019-MBT-User-Survey-Results.pdf
https://www.critical-logic.com/assets/Critical-Logic-SunMicroSystems-CaseStudy.pdf
https://www.critical-logic.com/assets/Critical-Logic-SFDC-Case-Study.pdf
http://www.libraryinformationsystem.org/Books.aspx

